VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (Civil) I - Semester (Main) Examinations, December - 2015

Strength of Materials-I

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B
Part-A (10 X 2=20 Marks)

1. Explain the stress-strain behaviour of mild steel with neat sketch.
2. A solid circular steel bar, 20 mm diameter is subjected to an axial tensile load of 50 kN . What is the decrease in diameter of the bar? $\mathrm{E}=200 \mathrm{GPa}$ and $\nu=0.25$
3. Define the terms; shear force, bending moment and point of contraflexure.
4. A simply supported beam of span 6 m carries a uniformly distributed load of $2.5 \mathrm{kN} / \mathrm{m}$. Draw the SF and BM diagrams for the beam.
5. A rectangular beam 250 mm deep is simply supported over a span of 3.5 m . What is the concentrated load at mid span, the beam can carry if the bending stress is not to exceed $100 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{I}=8 \times 10^{6} \mathrm{~mm}^{4}$.
6. The maximum shear stress in a beam of circular section of diameter 120 m is $4.5 \mathrm{~N} / \mathrm{mm}^{2}$.
wis Find the shear force to which the beam is subjected.
7. Prove that an eccentric load causes a direct stress as well as bending stress by taking rectangular column as an example.
8. Explain the concept and significance of the pole in Mohr's circle.
9. A cylindrical pipe of diameter 2 m and thickness 2 cm is subjected to an internal pressure of $1.8 \mathrm{~N} / \mathrm{mm}^{2}$. Find the longitudinal and circumferential stresses developed in pipe.
10. State the assumptions made in the analysis of thin and thick cylindrical shells.

Part-B (5 X 10=50 Marks)

(All bits carry equal marks)
11. a) A copper rod $12 \mathrm{~mm} \varphi$ and 40 mm long, fits into an aluminium tube of $20 \mathrm{~mm} \varphi$ and thickness 4 mm of equal length. If the assembly is held by a rigid plate at the end and is stress free at $20^{\circ} \mathrm{C}$. Take for copper $\mathrm{E}=120 \mathrm{GPa}$ and $\alpha=18 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, for aluminium $\mathrm{E}=70 \mathrm{GPa}, \alpha=23 \times 10^{-6}{ }^{\circ} \mathrm{C}$. When the assembly is heated to $60^{\circ} \mathrm{C}$, Find the stress in the copper rod and stress in the aluminium tube.
b) Calculate the modulus of rigidity and bulk modulus of a cylindrical bar of diameter 25 mm and of length 1.5 m , if the longitudinal strain in a bar during a tensile test is four times the lateral strain. Find the change in volume, when the bar is subjected to a hydrostatic pressure of 100 MPa . Take $\mathrm{E}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
12. a) Draw shear force and bending moment diagrams for the cantilever beam as shown in Fig. 1.

b) Find the maximum bending moment and its position from A , for a beam loaded and supported as shown in Fig. 2 and draw SFD and BMD.

Fig. 2
13. a) A T-beam having flange $150 \mathrm{~mm} \times 20 \mathrm{~mm}$ and web $20 \mathrm{~mm} \times 160 \mathrm{~mm}$ is simply supported over a span of 6 m . It carries a udl of $5 \mathrm{kN} / \mathrm{m}$, including the self-weight over its entire span, together with a load of 3.5 kN at mid span. Find the tensile and compressive stresses occurring in the beam section and draw the stresses across the section.
b) A steel beam of 1-section is 600 mm deep. Each flange is 250 mm wide and 25 mm thick. The web is 15 mm thick. The beam section is subjected to a shear force of 500 kN . Determine the shear stress distribution for the beam section at various points when the web is horizontal. Draw the shear stress distribution.
14. a) A short cast iron column is of hallow section of uniform thickness, the external diameter 250 mm and internal diameter 150 mm . A vertical compressive load acts at an eccentricity of 50 mm from the axis of the column. If the maximum permissible stress is $90 \mathrm{~N} / \mathrm{mm}^{2}$ in compression, calculate the maximum allowable load.
b): The stress system at a point is given by a normal stress of $120 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive) along the x-axis, $80 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) along the y-axis and a shear stress of $-40 \mathrm{~N} / \mathrm{mm}^{2}$ on the x -planes. Find the principal stresses and the planes on which they act. Show the stresses and planes in a neat sketch.
15. a) A thin cylindrical pressure vessel has an internal diameter of 150 mm and a wall thickness of 5 mm . It is subjected to an internal pressure $7 \mathrm{~N} / \mathrm{mm}^{2}$. If the cylinder is 900 mm long and $\mathrm{E}=200 \mathrm{GPa}$, find the Poisson's ratio for the material if the change in volume under this pressure is $15,000 \mathrm{~mm}^{3}$.
b) Find the thickness of metal necessary for a steel cylindrical shell of internal diameter 200 mm to withstand an internal pressure of 50 MPa . The maximum hoop stress in the section is not to exceed 150 MPa .
16. a) A 500 mm diameter reinforced concrete column has 8 bars of 20 mm diameter. The column is subjected to an axial load of 875 kN . Determine the stress developed in concrete and steel. Take $\mathrm{E}_{\text {steel }}=12 \mathrm{E}_{\text {concrete }}$.
b) A doubly overhung beam, 9 m long, is supported at 1.5 m from either end. It carries a u d 1 of $30 \mathrm{kN} / \mathrm{m}$ for a length of 3 m from the right end and the left end. Draw SF and BM diagrams.
17. a) A wooden beam 100 mm wide and 150 mm deep is simply supported over a span of 4 m . If shear force at a section of the beam is 45 kN , find the shear stress at a distance of 25 mm above the neutral axis.
b) A rectangular section of dimensions $200 \mathrm{~mm} \times 100 \mathrm{~mm}$, subjected to a load of 80 kN applied 40 mm and 20 mm off the centroid parallel to the 200 mm and 100 mm sides respectively. Find the stresses at four corners.

